

Network structure in two-winner combinatorial group contest

Anwesha Mukerjee

(School of Economics, University of East Anglia)

02/08/2015, ISI (Delhi)

- A contest is a game where players spend costly resources in order to win valuable rewards and the spent resources are sunk irrespective of the final outcome.
 - Sports tournaments
 - Political election
 - R&D conests
 - Tenders for Government projects

- A contest is a game where players spend costly resources in order to win valuable rewards and the spent resources are sunk irrespective of the final outcome.
 - Sports tournaments
 - Political election
 - R&D contests
 - Tenders for Government projects
- A <u>multi-winner</u> contest is a contest where there are more than one winners and any individual player can win at most one reward.
 - Admission into a university course
 - Acceptance of a research paper in a conference
 - Allocation of quotas

 A k-winner (k > 1) combinatorial group contest is a contest where the possible overlapping k-player groups of winners are defined by given preferences and the members of only one such group receive the k rewards.

A k-winner (k > 1) combinatorial group contest is a contest where the possible overlapping k-player groups of winners are defined by given preferences and the members of only one such group receive the k rewards.

A k-winner (k > 1) combinatorial group contest is a contest where the possible overlapping k-player groups of winners are defined by given preferences and the members of only one such group receive the k rewards.

(*a la* Chowdhury and Kovenock, 2012)

Examples: Choosing a group of representatives from a larger population.

- Selection of civilians for council membership.
- Selection of a set of employees for working together on a new project.
- Choice of research papers in a conference session
- Photography contests and designing contests.

A combinatorial group contest is a k-winner (k > 1) contest where the possible overlapping k-player groups of winners are defined by given preferences and the members of only one such group receive the k rewards.

A combinatorial group contest is a k-winner (k > 1) contest where the possible overlapping k-player groups of winners are defined by given preferences and the members of only one such group receive the k rewards.

A combinatorial group contest is a k-winner (k > 1) contest where the possible overlapping k-player groups of winners are defined by given preferences and the members of only one such group receive the k rewards.

A combinatorial group contest is a k-winner (k > 1) contest where the possible overlapping k-player groups of winners are defined by given preferences and the members of only one such group receive the k rewards.

- Six permissible winning coalitions.
- Each player is a part of as many prospective coalitions as the number of his direct neighbours.

The contest success function for player *i* is given by

$$p_i = \frac{n_i x_i + \sum_{j \in N_i} x_j}{n_i x_i + \sum_{j \neq i} n_j x_j}$$

Where x_i is the effort input (resource outlay) of player *i*

 N_i is the set of direct neighbours of player i

 $n_i = |N_i|$

Equilibrium outlay for k = 2

The Expected payoff to player i is given by

$$\pi_i = \frac{n_i x_i + \sum_{j \in N_i} x_j}{n_i x_i + \sum_{j \neq i} n_j x_j} V_i - c_i x_i$$

(where c_i is the marginal effort cost and V_i is the value of a reward to i)

Which player *i* maximizes under the constraint $x_i \ge 0$

Equilibrium outlay for k = 2

The Expected payoff to player i is given by

$$\pi_i = \frac{n_i x_i + \sum_{j \in N_i} x_j}{n_i x_i + \sum_{j \neq i} n_j x_j} V_i - c_i x_i$$

(where c_i is the marginal effort cost and V_i is the value of a reward to i)

Which player *i* maximizes under the constraint $x_i \ge 0$

The equilibrium effort is given by

$$x_i^* = max \left\{ 0, \left(\frac{V_i}{n_i c_i}\right)^{\frac{1}{2}} \left(\sum_{j \in N_i} (n_j - 1)x_j + \sum_{j \in N \setminus N_i \cup \{i\}} n_j x_j\right)^{\frac{1}{2}} - \frac{1}{n_i} \sum_{i \neq j} n_j x_j \right\}$$

Contribution to the literature

All possible network structures for N = 4 and k = 2and corresponding equilibrium payoffs

	Degree 1		De	egree 2	Degree 3		
Network structure with 4 players	# players	Payoff	# players	Payoff	# players	Payoff	
Star	3	v/9	0 _		1	ν	
Asymmetric	1	v/7	2	22v/49	1	29v/49	
Complete	0	-	0	-	4	3v/8	
Semi- symmetric	0	_	2	7v/25	2	12v/25	
Ring	0	_	4	3v/8	0	_	
Line	2	2v/9	2	5v/9	0	_	

 $\frac{v}{9} < \frac{v}{7} < \frac{2v}{9} < \frac{7v}{25} < \frac{3v}{8} < \frac{22v}{49} < \frac{12v}{25} < \frac{5v}{9} < \frac{29v}{49} < v$

	De	egree 1	De	egree 2	Degree 3		
Network structure with 4 players	# players	Payoff	# players	Payoff	# players	Payoff	
Star 3		v/9	0	_	1	ν	
Asymmetric	Asymmetric 1		2	22 <i>v</i> /49	1	29v/49	
Complete 0		_	0	_	4	3v/8	
Semi- symmetric	Semi- symmetric 0		2	7v/25	2	12v/25	
Ring	0	_	4	3v/8	0	_	
Line	2	2v/9	2	5v/9	0	_	

 $\frac{v}{9} < \frac{v}{7} < \frac{2v}{9} < \frac{7v}{25} < \frac{3v}{8} < \frac{22v}{49} < \frac{12v}{25} < \frac{5v}{9} < \frac{29v}{49} < v$

	De	Degree 1		Degree 2		gree 3
Network structure with 4 players	# players	Payoff	# players	Payoff	# players	Payoff
Star	3	v/9	0	_	1	v
Asymmetric	1	v/7	2	22 <i>v</i> /49	1	29v/49
Complete	0	-	0	-	4	3v/8
Semi- symmetric	0	_	2	7v/25	2	12 <i>v</i> /25
Ring	0	_	4	3v/8	0	_
Line	2	2v/9	2	5v/9	0	_

 $\frac{v}{9} < \frac{v}{7} < \frac{2v}{9} < \frac{7v}{25} < \frac{3v}{8} < \frac{22v}{49} < \frac{12v}{25} < \frac{5v}{9} < \frac{29v}{49} < v$

		Degree 1		Degree 2		Degree 3	
	Network structure with 4 players	# players	Payoff	# players	Payoff	# players	Payoff
	Star	3	v/9	0	_	1	ν
	Asymmetric	1	v/7	2	22 <i>v</i> /49	1	29v/49
	Complete	0	_	0	_	4	3v/8
ŗ	Semi- symmetric	0	-	2	7v/25	2	12v/25
	Ring	0	_	4	3v/8	0	_
	Line	2	2v/9	2	5v/9	0	_

 $\frac{v}{9} < \frac{v}{7} < \frac{2v}{9} < \frac{7v}{25} < \frac{3v}{8} < \frac{22v}{49} < \frac{12v}{25} < \frac{5v}{9} < \frac{29v}{49} < v$

Static and Dynamic Mechanism Design workshop

			Degree 1		Degree 2		gree 3
	Network structure with 4 players	# players	Payoff	# players	Payoff	# players	Payoff
	Star	3	v/9	0	_	1	ν
	Asymmetric	1	v/7	2	22v/49	1	29v/49
	Complete	0	_	0	_	4	3v/8
	Semi- symmetric	0	_	2	7v/25	2	12v/25
	Ring	0	_	4	3v/8	0	_
	Line	2	2v/9	2	5v/9	0	_

 $\frac{v}{9} < \frac{v}{7} < \frac{2v}{9} < \frac{7v}{25} < \frac{3v}{8} < \frac{22v}{49} < \frac{12v}{25} < \frac{5v}{9} < \frac{29v}{49} < v$

		De	Degree 1		Degree 2		gree 3
	Network structure with 4 players	# players	Payoff	# players	Payoff	# players	Payoff
	Star	3	v/9	0	_	1	ν
	Asymmetric	1	v/7	2	22 <i>v</i> /49	1	29 <i>v</i> /49
	Complete	0	_	0	_	4	3v/8
	Semi- symmetric	0	_	2	7v/25	2	12v/25
	Ring	0	_	4	3v/8	0	_
	Line	2	2v/9	2	5v/9	0	_

 $\frac{v}{9} < \frac{v}{7} < \frac{2v}{9} < \frac{7v}{25} < \frac{3v}{8} < \frac{22v}{49} < \frac{12v}{25} < \frac{5v}{9} < \frac{29v}{49} < v$

	De	egree 1	Degree 2		Degree 3	
Network structure with 4 players	# players	Payoff	# players	Payoff	# players	Payoff
Star	3	v/9	0	_	1	ν
Asymmetric	1	v/7	2	22v/49	1	29 <i>v</i> /49
Complete	0	-	0	-	4	3v/8
Semi- symmetric	0	_	2	7v/25	2	12v/25
Ring	0	_	4	3v/8	0	_
Line	2	2v/9	2	5v/9	0	_

 $\frac{v}{9} < \frac{v}{7} < \frac{2v}{9} < \frac{7v}{25} < \frac{3v}{8} < \frac{22v}{49} < \frac{12v}{25} < \frac{5v}{9} < \frac{29v}{49} < v$

Contest success function for k = 3

Number of permissible 3-partite coalition that a player *i* is a part of:

$$N_i' = \binom{n_i}{2} + \sum_{t \in N_i} |N_t \setminus N_i \cup \{i\}|$$

Contest success function for k = 3

The contest success function for player i is given by

$$P_{i} = \frac{\binom{n_{i}}{2}x_{i} + (n_{i} - 1)\sum_{t \in N_{i}}x_{t} + \sum_{t \in N_{i}}[|N_{t} \setminus N_{i} \cup \{i\}|(x_{i} + x_{t}) + \sum_{j \in N_{t} \setminus N_{i} \cup \{i\}}x_{j}]}{\sum_{j \in N}\left[\binom{n_{i}}{2}x_{j} + \sum_{t \in N_{j}}|N_{t} \setminus N_{j} \cup \{j\}|x_{j}\right]}$$

Where x_i is the effort input (resource outlay) of player *i* N_i is the set of direct neighbours of player *i*

$$n_i = |N_i|$$

Equilibrium outlay for k = 3

The equilibrium effort is given by

$$x_{i}^{*} = \max\left\{0, \left(\frac{\nu_{i}}{N_{i}^{'}}\right)^{\frac{1}{2}} (T_{-i} - M_{-i})^{\frac{1}{2}} - \frac{T_{-i}}{N_{i}^{'}}\right\}$$

$$M_{-i} = (n_i - 1) \sum_{t \in N_i} x_t + \sum_{t \in N_i} \left[|N_t \setminus N_i \cup \{i\}| x_t + \sum_{j \in N_t \setminus N_i \cup \{i\}} x_j \right]$$
$$T_{-i} = \sum_{j \in N \setminus \{i\}} \left[\binom{n_j}{2} + \sum_{t \in N_j} |N_t \setminus N_j \cup \{j\}| \right] x_j$$
and
$$N'_i = \binom{n_i}{2} + \sum_{t \in N_i} |N_t \setminus N_i \cup \{i\}|$$

Where

- This study characterizes the equilibrium effort for 2-winner and 3-winner combinatorial contests, and argues that
 - High linkage players receive higher equilibrium payoffs.

Irregular network \rightarrow Complete network.

- The effect of change in degree of a player has dynamic consequences on other players' equilibrium efforts and may lead to further adjustment in the network structure.
- The main contribution of this paper is to generalize the network structure in order to accommodate irregular networks, which however comes at a cost of restricting the number of winners.